Single-crystal halide perovskites: Opportunities and challenges

نویسندگان

چکیده

Single-crystal halide perovskites have received growing attention due to their high carrier-transport efficiency and excellent stability in comparison with polycrystalline counterparts. This review is timely, since it gives a comprehensive overview of the advances single-crystal perovskite, including unique physical properties, controllable crystal growth, and, most importantly, device applications. In end, we share our perspectives on remaining challenges potential solutions for driving this emerging field forward. will provide food thought researchers jump-start beginners who want join exciting field. demonstrated optoelectronic properties promising application potentials, thanks remarkable carrier dynamics, solution processing procedures, outstanding stabilities. The latest progress future are reviewed herein. basic fundamental studies first discussed. We then introduce growth methods these materials summarize recent developments. further present perovskite devices among major fields. Finally, discuss current some suggestions development. hope paper can help readers understand status perovskites. As class semiconductors, hold significant potentials multiple However, electronic heavily focused thin films, primarily simplicity depositing polycrystals.1Chen Y. He M. Peng J. Sun Liang Z. Structure control organic-inorganic optoelectronics: from films single crystals.Adv. Sci. 2016; 3: 1500392Crossref Scopus (139) Google Scholar,2Park N.G. Zhu K. Scalable fabrication coating solar cells modules.Nat. Rev. Mater. 2020; 5: 333-350Crossref (125) Scholar Despite successful use cases various devices, face many that greatly impede research, development, commercialization those devices. A density structural defects typically point (e.g., vacancies, interstitials, substitutional antisites), impurities, dislocations, grain boundaries, residual precipitates PbI2 cluster metallic Pb fast antisolvent deposition process).3Ball J.M. Petrozza A. Defects perovskite-halides effects cells.Nat. Energy. 1: 16149Crossref (395) Those result non-radiative loss,4Shi D. Adinolfi V. Comin R. Yuan Alarousu E. Buin Chen Shi Hoogland S. Rothenberger et al.Low trap-state long diffusion organolead trihalide crystals.Science. 2015; 347: 519-522Crossref PubMed (2787) material degradation,5Chen L. Tan Y.-Y. Z.-X. Wang T. Hu Nan Z.-A. Xie L.-Q. Hui Huang J.-X. Zhan C. al.Toward long-term stability: alloys cesium-containing mixed cation perovskite.J. Am. Chem. Soc. 2019; 141: 1665-1671Crossref (20) hysteresis,6Kong W. Li F. Zhao Xing Zou Yu Lin C.-H. Shan Lai Y.H. al.Ultrathin monocrystals boost cell performance.Adv. Energy 10: 2000453Crossref (5) other detrimental effects.7Fu Tamarat P. Trebbia J.-B. Bodnarchuk M.I. Kovalenko M.V. Even Lounis B. Unraveling exciton–phonon coupling individual FAPbI3 nanocrystals emitting near-infrared photons.Nat. Commun. 2018; 9: 3318Crossref (54) Scholar,8Ni Bao Liu Jiang Q. Wu W.-Q. Dia X. Hartweg al.Resolving spatial energetic distributions trap states metal cells.Science. 367: 1352-1358Crossref (126) perovskites, contrary, exhibit largely suppressed ordered lattice arrangement. superiority bestows several attractive benefits, which has garnered field.8Ni Scholar, 9Kelso Mahenderkar N.K. Tubbesing J.Z. Switzer J.A. Spin epitaxial films.Science. 364: 166PubMed 10Shi Shiring S.B. Gao Akriti C D H Y al.Two-dimensional lateral heterostructures.Nature. 580: 614-620Crossref (52) 11Lei Zhang Yan Lee Tsai H. Choi al.A process flexible devices.Nature. 583: 790-795Crossref (43) 12Chen Lei Cai Chui M.-H. Rao Gu al.Strain engineering stabilization perovskites.Nature. 577: 209-215Crossref (100) review, been made date developing focus property merits, methods, cases. thoughts challenges, inviting more contribute Compared conventional show as well compositional versatility, confers fascinating semiconductive wide range Perovskite was discovered by German mineralogist Gustav Rose Russian's Ural Mountains 1839.13Rose G. Description new minerals Urals.Ann. Phys. 1839; 124: 551-573Crossref Perovskites same ABX3 structure. general be organic or inorganic, B cation, X anion.14Boyd C.C. Cheacharoen Leijtens McGehee M.D. Understanding degradation mechanisms improving photovoltaics.Chem. 119: 3418-3451Crossref (399) Specifically, common A-site cations include Cs+,15Kour Arya Verma Gupta Banhoria Bharti Datt Potential substitutes replacement lead cells: review.Glob. Chall. 1900050Crossref Rb+,16Saliba Matsui Domanski Seo J.-Y. Ummadisingu Zakeeruddin S.M. Correa-Baena J.-P. Tress W.R. Abate Hagfeldt Grätzel Incorporation rubidium into improves photovoltaic performance.Science. 354: 206-209Crossref (2278) K+,17Abdi-Jalebi Andaji-Garmaroudi Cacovich Stavrakas Philippe Richter Alsari Booker E.P. Hutter E.M. Pearson A.J. al.Maximizing stabilizing luminescence potassium passivation.Nature. 555: 497-501Crossref (724) methylammonium (MA+),18Xiao Han Hou Qin Nguyen H.T. Wen Wei Yeddu Saidaminov al.All-perovskite tandem 24.2% certified area over 1 cm2 using surface-anchoring zwitterionic antioxidant.Nat. 870-880Crossref (48) formamidinium (FA+),19Lu Ahlawat Mishra Eickemeyer F.T. Yang Fu Avalos C.E. al.Vapor-assisted highly efficient, stable black-phase 370: eabb8985Crossref (57) dimethylammonium (DMA+),20Ke Spanopoulos I. Stoumpos Kanatzidis M.G. Myths reality HPbI3 4785Crossref (116) ethylammonium (EA+),21Chu Ma C.-X. Deng Ye Meng Yin You Large incorporated efficient spectra blue light-emitting diodes.Nat. 11: 4165Crossref (32) guanidinium (GUA+),22Jodlowski A.D. Roldán-Carmona Grancini Salado Ralaiarisoa Ahmad Koch N. Camacho de Miguel Nazeeruddin M.K. iodide 19% 2017; 2: 972Crossref (249) tetramethylammonium (TMA+),23Huang Xu Zeng Ke Facile ETL-free 20% defect passivation interface engineering.Chem. 55: 2777-2780Crossref tetrabutylammonium (TBA+),24Poli Eslava Cameron Tetrabutylammonium moisture-resistant semitransparent cells.J. 22325-22333Crossref phenylethylammonium (PEA+);25Zhang S.F. Two-dimensional (PEA)2PbBr4 crystals performance UV-detector.J. 7: 1584-1591Crossref Scholar,26Li Chueh C.-C. Petrone Jen A.K.-Y. Mixed FAxPEA1–xPbI3 enhanced phase ambient toward high-performance cells.Adv. 1601307Crossref (217) Common B-site Pb2+,27Kim Min K.S. D.Y. Yoon Seok S.I. Impact strain relaxation ?-formamidinium 108-112Crossref (145) Mg2+,28Yang Kamarudin M.A. Kapil Hirotani Ng C.H. Hayase Magnesium-doped MAPbI3 layers humid air atmosphere.ACS Appl. Interfaces. 24543-24548Crossref (27) Ca2+,29Chan S.-H. M.-C. K.-M. W.-C. T.-H. Su W.-F. Enhancing doping barium halide.J. 18044-18052Crossref Ba2+,29Chan Mn2+,30Liu Chu Weng Efficient fabricated manganese hybrid perovskites.J. 11943-11952Crossref Fe2+,31Boström H.L.B. Bruckmoser Goodwin A.L. Ordered vacancies an formate 17978-17982Crossref (11) Ni2+,32Islam M.N. Hadi Podder Influence Ni lead-halide lead-free applications.AIP Adv. 125321Crossref (18) Cu2+,33Wang K.-L. Z.-K. Liao L.-S. Tailored transformation CsPbI2Br copper(II) bromide all-inorganic cells.Nano Lett. 19: 5176-5184Crossref (44) Zn2+,34Thapa Adhikari G.C. Grigoriev Zn-alloyed perovskite-based white diodes superior color quality.Sci. Rep. 18636Crossref Cd2+,35Cai Hills-Kimball Song Hofman Zheng Rubenstein B.M. O. Synthesis Cd-doped CsPbCl3 dual-wavelength emission.J. 7079-7084Crossref Ge2+,36Kopacic Friesenbichler Höfler Kunert Plank Rath Trimmel Enhanced germanium through engineering.ACS 343-347Crossref (87) Sn2+,37Lee S.J. Shin S.S. Im Ahn T.K. Noh J.H. Jeon N.J. Reducing tin its beneficial cells.ACS 46-53Crossref (76) Eu2+,38Xiang Kubicki D.J. Luo Prochowicz Akin Emsley Dietler al.Europium-doped inorganic cells.Joule. 205-214Abstract Full Text PDF (204) Tm2+,39Arumugam G.M. Karunakaran S.K. Low threshold lasing novel thulium-incorporated C(NH2)3PbI3 Fabry-Pérot resonator.J. 6: 12537-12546Crossref Yb2+;40Zhou Pan Bai Cerium ytterbium codoped quantum dots: downconverter silicon 29: 1704149Crossref (188) X-site anions Cl?,41Liu Cui Ren Fan al.Two-inch-sized CH3NH3PbX3 (X= Cl, Br, I) crystals: characterization.Adv. 27: 5176-5183Crossref (0) Br?,42Fang Dong Quantification re-absorption re-emission processes determine photon recycling crystals.Nat. 8: 14417Crossref (122) I?,43Li Berry J.J. On-device sequestration cells.Nature. 578: 555-558Crossref (75) (HCOO?),44Donlan E.A. Boström Geddes H.S. Reynolds Compositional nanodomain formation perovskites.Chem. 53: 11233-11236Crossref BH4?.45Lang Jia Ouyang Yao Dehydrogenation reaction pathway perovskite-type NH4Ca(BH4)3.Prog. Nat. Int. 28: 194-199Crossref (3) Depending effective radii cations, anions, ranges symmetric cubic structure less-symmetric tetragonal orthorhombic (Figure 1A).46Murali Kolli H.K. Ketavath Bakr O.M. Mohammed O.F. Single next big wave optoelectronics.ACS 184-214Crossref general, backbone pseudocubic structures consists corner-sharing [BX6] octahedra, occupying 12-fold coordination sites formed middle eight octahedra.47Stranks S.D. Snaith H.J. Metal-halide devices.Nat. Nanotechnol. 391-402Crossref (1776) tolerance factor usually used evaluate whether maintained:51Dunlap-Shohl W.A. Zhou Padture N.P. Mitzi D.B. Synthetic approaches films.Chem. 3193-3295Crossref (197) Scholart=rA+rX2(rB+rX),where t factor, rA radius rB rX anion. Empirically, calculated ranging 0.8 considered symmetry 1B).15Kour Scholar,46Murali Scholar,48Li Park J.-S. Stabilizing tuning factor: cesium solid-state alloys.Chem. 284-292Crossref (918) If size relatively small MA+ 217 pm15Kour Scholar), would small, formed. On side, if too large TBA+ 494 pm24Poli adopt layered two-dimensional (2D) linear one-dimensional (1D) such Ruddlesden-Popper phase, Dion-Jacobson alternating-cation 1C).52Zheng Abdellah Kong Jennings Kurtz C.A. Messing M.E. Niu Gosztola Al-Marri M.J. al.Direct experimental evidence photoinduced strong-coupling polarons nanoparticles.J. 4535-4539Crossref (38) Pb2+ 119 Sn2+ 110 Scholar) not impact they do change much compared effectively affect For example, (I? 220 adopts under room temperature while MAPbBr3 MAPbCl3 (Br? 196 Cl? 181 Also, F?-based rarely studied F? anion (129 pm radius15Kour results too-small lattice.53El-Mellouhi Marzouk Bentria E.T. Rashkeev S.N. Kais Alharbi F.H. Hydrogen bonding perovskites.ChemSusChem. 2648-2655Crossref Because tunability compositions, very versatile functionalities.54Zhang Eperon G.E. Metal energy applications.Nat. 16048Crossref (443) Halide intriguing semiconductors. It reported valence band maximum mainly s orbitals heavy ions Pb2+) p I–).55Mehmood U. Al-Ahmed Afzaal Al-Sulaiman F.A. Daud Recent organometallic halides based cells.Renew. Sustain. 78: 1-14Crossref (30) Therefore, substituting chemical composition alter consequently, enables broad applications.56Zou Chang Böhringer K.F. L.Y. Photolithographic patterning multicolor display applications.Nano 20: 3710-3717Crossref (12) 57Lu Guo W.W. Rogach devices: technology next-generation displays.Adv. Funct. 1902008Crossref (112) 58Sun Qu Dai Xiao Lead vortex microlasers.Nat. 4862Crossref (10) 59Wang Micro- nanostructured perovskites: integrations devices.Adv. 33: 2000306Crossref With different tunable direct gap between 1.2 eV 3.1 (Figures 1D 1E),60Li synthesis, application.Adv. 2008684Google covers entire visible spectrum. Besides, demonstrate exciton (bound electron-hole pairs) binding energies (Eb) compositions dimensions. widely MAPbI3, Eb ?10 meV,61Yang Surrente Galkowski Bruyant Maude D.K. Haghighirad A.A. Plochocka Nicholas R.J. dielectric constant triiodide 1851-1855Crossref (88) smaller than thermal at (?26 meV), indicating excitons easily overcome Coulombic interaction fluctuation become free charge carriers.62Herz L.M. Charge-carrier dynamics perovskites.Annu. 67: 65-89Crossref (384) carriers readily separated collected upon excitation, suitable photodetection reducing dimensions perovskites63Zhang Lu Tong Beard M.C. Advances perovskites.Energy Environ. 13: 1154-1186Crossref changing others64Wang micro- nanolasers.Adv. Opt. 1800278Crossref (94) increase hundreds millielectron volts. radiative recombination carriers, advantageous Additionally, shown properties. High mobility (up cm2·V?1·s?1, low electron/hole masses65Herz mobilities limits.ACS 1539-1548Crossref (429) lifetime microseconds, benign chemistry65Herz Scholar,66Kim Hong K.-H. role intrinsic 2014; 1312-1317Crossref (560) perovskites,65Herz contributing length tens micrometers).47Stranks worth mentioning found comparable typical semiconductors GaAs).67Brenner T.M. Egger D.A. Rappe A.M. Kronik Hodes Cahen Are actually “high”?.J. 4754-4757Crossref (143) Fröhlich interaction, phonons polar semiconductors,68Dubey Paliwal Ghosh Frohlich compound semiconductors: comparative study.Adv. Res. 1141: 44-50Crossref relaxes carriers' initial kinetic therefore limits perovskites.63Zhang Nevertheless, render extremely applications like photovoltaic, low-limit photodetection, others. Meanwhile, absorption coefficient up 105 cm?1 spectrum,69Ahmadi photodetectors: physics.Adv. 41https://doi.org/10.1002/adma.201605242Crossref (278) strong interband transition.70Wehrenfennig Johnston M.B. Herz Homogeneous emission line broadening organo CH3NH3PbI3–xClx.J. 1300-1306Crossref Scholar,71De Wolf Holovsky Moon S.-J. Löper Niesen Ledinsky Haug F.-J. Yum J.-H. Ballif Organometallic sharp optical edge relation performance.J. 1035-1039Crossref (1450) one order magnitude higher Si.72Huang Shao 17042Crossref (527) required absorber thickness <400 nm thinner Si.73Yang Khurgin Fang N.X. High-performance single-crystalline thin-film photodetector.Adv. 30: 1704333Crossref (123) Consequently, reduced only reduce devices' cost significantly, but also potentially suppress according Shockley-Queisser model,74Krogstrup Jørgensen H.I. Heiss Demichel Holm J.V. Aagesen Nygard Fontcuberta i Morral Single-nanowire beyond limit.Nat. Photon. 2013; 306-310Crossref (569) open-circuit voltage (VOC) photovoltaics. Last least, processed low-temperatu

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lead halide perovskites: Challenges and opportunities in advanced synthesis and spectroscopy

Hybrid lead perovskites containing a mixture of organic and inorganic cations and anions have led to solar cell devices with performance and stability that are better than those of their single-halide analogs. 207Pb solidstate nuclear magnetic resonance and single-particle photoluminescence spectroscopies show that the structure and composition of mixed-halide and likely other hybrid lead perov...

متن کامل

Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth.

Here we show the retrograde solubility of various hybrid perovskites through the correct choice of solvent(s) and report their solubility curves. Retrograde solubility enables to develop inverse temperature crystallization of FAPbX3 (FA = HC(NH2)2(+), X = Br(-)/I(-)). FAPbI3 crystals exhibit a 1.4 eV bandgap--considerably narrower than their polycrystalline counterparts.

متن کامل

Hybrid Organic-Inorganic Perovskites (HOIPs): Opportunities and Challenges.

The conclusions reached by a diverse group of scientists who attended an intense 2-day workshop on hybrid organic-inorganic perovskites are presented, including their thoughts on the most burning fundamental and practical questions regarding this unique class of materials, and their suggestions on various approaches to resolve these issues.

متن کامل

Islam; Challenges and Opportunities

Undoubtedly Islamic Revolution of Iran has been the source of Islamic awakening in the middle-east. Therefore Islamic Republic of Iran plays the role of an example and a director of political developments in the region. Islamic awakening in Arab countries has been able to question the dominant discourse of dictators in the middle-east region and topple their regimes. These developments include ...

متن کامل

High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties

We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3 (+), X = Br(-) or I(-)) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Matter

سال: 2021

ISSN: ['2604-7551']

DOI: https://doi.org/10.1016/j.matt.2021.05.002